II B.Tech - II Semester – Regular Examinations – AUGUST 2021

ELECTROMAGNETIC WAVES (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- Part-A contains 5 short answer questions. Each Question carries 2 Marks.
 - 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
 - 4. All parts of Question paper must be answered in one place

$\mathbf{PART} - \mathbf{A}$

- 1. a) Give the relationship between electric field intensity and electric Potential.
 - b) State Ampere's Circuital Law.
 - c) Write Maxwell's Equations for Free Space in Point Form.
 - d) Define Skin Depth.
 - e) Write the wave equation in free space.

PART - B

<u>UNIT – I</u>

2.	a)	Derive the expression for electric field intensity due to	
		infinite line charge.	6 M
	b)	Eight Identical Charges Q each are placed on the	
		corners of the cube of side 'a'. Find the resultant force	
		on the Charge.	6 M

OR

3.	a)	State and Explain Gauss's Law.	6 M
	b)	Starting from the Point Form of Gauss's law, derive	6 M
		Laplace equation and Poisson's equation.	
		<u>UNIT – II</u>	

4.	a)	State and explain the Biot-Savart'slaw and derive the	
		expressions for the magnetic field intensity due to	
		surface and volume currents.	6 M
	b)	What is Lorentz's force Law? Derive an expression for	
		Magnetic Vector Potential.	6 M
		OR	
5.	a)	Explain Ampere's circuital Law for steady currents.	
		Mention its Application and Limitations.	6 M
	b)	Derive an expression for the energy density of the	
		steady magnetic fields.	6 M

UNIT-III

6.	a)	What is the Faraday's Law of Induction? Explain the	
		significance of the terms 'transformer emf' and	
		'generator emf'.	6 M
	b)	In free space, $D = D_m \sin(\omega x + bz) X$. Determine B and	
		displacement current density.	6 M
		OR	

7.	a)	What is the significance of Maxwell's equations?	
		Mention them in Various forms.	6 M
	b)	A copper wire carries a conduction current of 1A.	
		Determine the displacement current in the wire of	
		100MHz. Take $\mathcal{E}=\mathcal{E}_0$ and conductivity $\sigma=5.8 \times 10^7 \Omega/m$	6 M

$\underline{UNIT} - IV$

8.	a)	Derive the wave equations for conducting medium from	
		Maxwell's equations.	6 M
	b)	Derive the expression for the Propagation constant,	
		attenuation Constant and Phase shift constant for a	
		perfect dielectric and good conductor.	6 M
		OR	
9.	a)	What is the Uniform plane wave? Show that the field in	
		the Uniform Plane wave is independent of two	
		dimensions.	6 M
	b)	What is polarization and explain different types of	
		Polarization?	6 M

$\underline{UNIT} - \underline{V}$

10.	a)	Analyze the reflection of a Plane wave from a plane	
		surface of a perfect conductor for Oblique incidence.	6 M
	b)	Derive an expression for reflection and transmission	
		co-efficient for an Obliquely incident perpendicular	
		Polarization.	6 M
		OR	

on

11.	a)	Find the reflection co-efficient of a plane wave when	
		the reflection is from a plane surface of a perfect	
		dielectric for the Normal Incidence.	6 M
	b)	Calculate the Brewster angle for an air water $E_r=81$	
		interface at which plane waves pass from the following:	
		(i) Air into water.	
		(ii) Water into air.	6 M